О нержавеющей стали

Нержавеющая сталь (коррозионно-стойкие стали, в простонародье «нержавейка») — легированнаясталь, устойчивая к коррозии в атмосфере и агрессивных средах.

В 1913 году Гарри Бреарли[en] (англ. Harry Brearley), экспериментировавший с различными видами и свойствами сплавов, обнаружил способность стали с высоким содержанием хрома сопротивляться кислотной коррозии. Нержавеющие стали делят на три группы:

  1. Коррозионностойкие стали — от них требуется стойкость к коррозии в несложных промышленных и бытовых условиях (из них можно изготавливать детали оборудования для нефтегазовой, легкой, машиностроительной промышленности, хирургические инструменты, бытовую нержавеющую посуду и тару).
  2. Жаростойкие стали — от них требуется жаростойкость — то есть стойкость к коррозии при высоких температурах в сильно агрессивных средах (напр. на химических заводах).
  3. Жаропрочные стали — от них требуется жаропрочность — то есть хорошая механическая прочность при высоких температурах.

Химический состав[править | править код]

При выборе химического состава коррозионностойкого сплава руководствуются так называемым правилом {\displaystyle {\frac {N}{8}}}: если к металлу, неустойчивому к коррозии (например, к железу) добавлять металл, образующий с ним твердый раствор и устойчивый против коррозии (к примеру хром), то защитное действие проявляется скачкообразно при введении {\displaystyle {\frac {1}{8}},{\frac {2}{8}},{\frac {3}{8}}…{\frac {N}{8}}} моль второго металла (коррозионная стойкость возрастает не пропорционально количеству легирующего компонента, а скачкообразно). Основной легирующий элемент нержавеющей стали — хром Cr (12-20 %); помимо хрома, нержавеющая сталь содержит элементы, сопутствующие железу в его сплавах (СSiMnSР), а также элементы, вводимые в сталь для придания ей необходимых физико-механических свойств и коррозионной стойкости (NiMnTiNbCoMo).

Сопротивление нержавеющей стали к коррозии напрямую зависит от содержания хрома: при его содержании 13 % и выше сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17 % — коррозионностойкими и в более агрессивных окислительных и других средах, в частности, в азотной кислоте крепостью до 50 %.

Причина коррозионной стойкости нержавеющей стали объясняется, главным образом, тем, что на поверхности хромсодержащей детали, контактирующей с агрессивной средой, образуется тонкая плёнка нерастворимых окислов, при этом большое значение имеет состояние поверхности материала, отсутствие внутренних напряжений и кристаллических дефектов.

В сильных кислотах (сернойсолянойфосфорной и их смесях) применяют сложнолегированные сплавы с высоким содержанием Ni и присадками MoCuSi.

Повышенная атмосферная коррозионностойкость стали достигается, как правило, целенаправленным изменением её химического состава. Считается, что наиболее эффективно повышают сопротивление строительных сталей атмосферной коррозии небольшие добавки никеля, хрома, и особенно фосфора, и меди. Так, легирование медью в пределах 0,2-0,4 % повышает на 20-30 % стойкость против коррозии открытых конструкций в промышленной атмосфере.

Классификация[править | править код]

По химическому составу нержавеющие стали делятся на:

  • Хромистые, которые, в свою очередь, по структуре делятся на;
  • Хромоникелевые;
    • Аустенитные
    • Аустенитно-ферритные
    • Аустенитно-мартенситные
    • Аустенитно-карбидные
  • Хромомарганцевоникелевые [1] (классификация совпадает с хромоникелевыми нержавеющими сталями).

Различают аустенитные нержавеющие стали, склонные к межкристаллитной коррозии, и стабилизированные — с добавками Ti и Nb. Значительное уменьшение склонности нержавеющей стали к межкристаллитной коррозии достигается снижением содержания углерода (до 0,03 %).

Нержавеющие стали, склонные к межкристаллитной коррозии, после сварки, как правило, подвергаются термической обработке.

Широкое распространение получили сплавы железа и никеля, в которых за счёт никеля аустенитная структура железа стабилизируется, а сплав превращается в слабо-магнитный материал.

Мартенситные и мартенсито-ферритные стали[править | править код]

Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности, ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся стали типа 30Х13, 40Х13 и т. д.

Ферритные стали[править | править код]

Эти стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроении. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся стали 400 серии.

Аустенитные стали[править | править код]

Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность [1][2]. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Теоретически изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные, но после холодного деформирования (любой мехобработки) могут проявлять некоторые магнитные свойства (часть аустенита превращается в феррит).

Аустенито-ферритные и аустенито-мартенситные стали[править | править код]

Аустенито-ферритные стали. Преимущество сталей этой группы — повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зёрен при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость. Аустенито-ферритные стали находят широкое применение в различных отраслях современной техники, особенно в химическом машиностроении, судостроенииавиации. К этому виду относятся, стали типа 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т.

Аустенито-мартенситные стали. Потребности новых отраслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разработке сталей мартенситного (переходного) класса. Это стали типа 07Х16Н6, 09Х15Н9Ю, 08Х17Н5М3.

Сплавы на железоникелевой и никелевой основе.

При изготовлении химической аппаратуры, особенно для работы в серной и соляной кислотах, необходимо применять сплавы с более высокой коррозионной стойкостью, чем аустенитные стали. Для этих целей используют сплавы на железноникелевой основе типа 04ХН40МТДТЮ и сплавы на никельмолибденовой основе Н70МФ, на хромоникелевой основе ХН58В и хромоникельмолибденовой основе ХН65МВ, ХН60МБ.

Производство и применение[править | править код]

Согласно данным ISSF, мировой объём выплавки нержавеющей стали в 2009 году составил 24,579 млн тонн[3]

Пять копеек Украины1992 Нержавеющая сталь

  • Хромистые нержавеющие стали:
  • Хромоникелевые и хромомарганцевоникелевые нержавеющие стали:
    • Бытовые предметы, в частности, столовая посуда (пищевые марки стали)
    • Ортопедическая стоматология (изготовление гильз для штампованных коронок)
  • Стабилизированные аустенитные нержавеющие стали:
    • Сварная аппаратура, работающей в агрессивных средах
    • Изделия, работающие при высоких температурах — 550—800 °C
    • Пищевая промышленность;

Нержавеющие стали используются как в деформированном, так и в литом состоянии.

Ссылка на источник: Википедия


Напишите первый комментарий к записи “О нержавеющей стали”